

UNCLASSIFIED
SECURITY CLASSIFICATION OK THIS P&GE(hm Data R aerQ)

of only the largest lessons may be sufficient for avoiding problems of long
lessons and that merely checking for the presence of -define- commands may be
an adequate measure of use of named variables.

(U)'Ilthough most of these forms of data can be easily collected by clerks
having a minimal amount of training, we feel that project managers may prefer
to make these checks themselves on an informal but regular basis. There is
a need for personal experience before many of these procedures are internal-
ized and managers are in the best position to make decisions about how to use
the data derived from these techniques. We recognize (and have experienced)
the difficulty of convincing authors of the need for anything that causes
even slightly more work in the short term when payoffs are greatest in the
long term (for an example, see the discussion regarding documentation). We
believe, however, that skillful use of computer-scanning techniques can give
managers an empirical basis for establishing guidelines and assessing uthors'
adherence to them.

ST

S-UIYCASFCTO PTISPG!ff aaEtrE

-k. .

SELECTED CHARACTERISTICS OF TUTOR PROGRAMS

PRODUCED IN ARPA-SPONSORED PLAId~PROJECTS

Larry Francis
Joseph A. Klecka

Aooession For K. Lynn Misselt

NTS GRA&I -
DTIC TAB
Unannounced
Justification.,

By.

Distr ibut ion/ D TIC
Avail~Abiiity -C od--es DTEL CE

Avail and/or JLEC98
Dist Special ELE221981

, ,I D

COMPUTER-BASED EDUCATION RESEARCH LABORATORY
UNIVERSITY OF ILLINOIS, Urbana-Champaign

£

DISTRIBUTION STATEMENT A
Approved for public release

Distribution Unlimited

rq

Copyright © 1978 by the Board of Trustees
of the University of Illinois

PLATO(® is a registered service mark
of the

University of Illinois

All rights reserved. No part of this book may be
reproduced in any form or by any means without per-
mission in writing from the author.

This research was supported in part by Advanced
Research Projects Agency of the Department of
Defense under U.S. Army Contract DAIC-15-73-C-0077
and indirectly by the National Science Foundation
(USNSF C-723).

ACKNOWLEDGMENTS

The authors wish to thank Kathy Geissler and Julie Garrard

for their patience, carefulness, and thoroughness in data

collection activities. We appreciate the editorial assist-

ance given by Flaine Avner, and we thank R. A. Avner for the

many constructive suggestions he gave and for the encourage-

ment he offered throughout the study.

1- i ,,I

TABLE OF COPITENTS

page
ACKNOWLEDGMENTS. i

INTRODUCTION........................1
Background........................1
Data Collection Procedures..................2
Sites...........................3

SPECIFIC CHARACTERISTICS...................6
Documentation.......................6

On-line comments.....................6
Named variables.......................

Courseware Engineering...................1
Lesson size.......................11
Use of drivers......................14
Restart commands 15

Measurement of Programming and Instructional Design
Sophistication ... 18

Reserved words....... 18
Response handling and feedba ck. 20

DISCUSSION AND CONCLUSIONS................23
Specific Findings....................23

Documentation. 23
Courseware engineering.................23
Reserved words, response handling, and feedback . . 25

Comments on Management Uses of the Computer Searching
Technique . . . 26

REFERENCES........................27

APPENDIX I..........................29

APPENDIX 11..........................30

I N T ,OD UT I1!!

Background

This document report on a study of several characteris-

tics of the Computer Based Fdueation (CTE) lessons written at

military training sites whose CBE projects were sponsored by

the Defense Advanced Research Projects Agency (ARPA). The

purposes of the study were:

1. to demonstrate the potential of computer-based scanning

of CBE programs as a means for extracting information

about the programming techniques used,

2. to suggest the use of computer-scanning techniques

to aid management of CBE development efforts, and

3. to provide additional information about the products

of CBE lesson development projects conducted under

ARPA sponsorship.

The scope of the study was limited to include only a few

of the more interesting and potentially useful parameters that

can be easily measured by computer-scanning techniques. The

lesson characteristics selected for examination were chosen

on the basis of (a) the ease and reliability of their measure-

ment and (b) their importance in CBE. Many other characteris-

tics could have been included, but the number studied is

sufficient to illustrate the potential of the technique.

Most data are reported on a site-by-site basis. The

names of the various sites are presented, not for the purpose

of pointing out strengths and deficiencies, but in order to

allow readers who are familiar with the materials produced at

a Riven site to relate their intuitive perceptions of lesson

characteristics to the actual quantities we have measured.

2

In general, the aim of the report is to illustrate the tech-

niques of computer-scanning and to identify important rela-

tionships among categories of lesson characteristics. It is

not our intent to critique the efforts of individual sites.

The lessons examined here were also studied in investiga-

tions of author language proficiency (Francis, 1976a) and the

use of peripheral devices connected to the terminal (Francis,

1976b). The general technique of using the computer to scan

or search through the source code for the presence of certain

target "character strings" was applied in both the study of

language proficiency and the investigation of terminal

peripheral device usage.

Although the quantities examined in this study and the

data collection routines used to measure them are those which

are provided by the PLATO system, the techniques used here

can be applied to other CBE systems which support similar

features. Nevertheless, we assume that most readers will

have some familiarity with the PLATO-oriented terminology for

various features and measured quantities. Because documenta-

tion of features of the PLATO system and its authoring

language is readily available (cf. Wood, 1q75: Lyman, 1977;

Sherwood, 1977), details of these features are not presented

here.

Data Collection Procedures

The first step in the data collection process was to

determine the nature and number of the lessons produced at

each of the ARPA-sponsored sites. Sites which developed only

a small number of lessons (five or fewer) or which produced

only lesson fragments were excluded. Next, the usage data

for each of the lessons was examined and any lesson having

five or fewer hours of usage during the previous year was

discarded. The latter technique insured that data storage

files, note files, incomplete lessons, and many other "non-

3

lessons" would be eliminated from the tarcet group. Finally.

the lists of site-developed programs were corrected "by h m'

so that some genuine but seldom-used lessons could be inc!,!-J.

The data were collected by means of the PLATO system's

"X-search" option. This feature allows the investigator t;

specify a word, phrase, or set of letters (i.e., a "character

string") and let the computer locate all occurrences of that

string. For example, if the investigator wishes to find how

many comments (i.e., statements describing the nature and

purpose of a piece of TUTOR coding) the author has placed in

a program, he enters the X-search option and specifies ail

the possible indicators of a comment. In TUTOR, the PLATO

system's authoring language, comments can be indicated by two

consecutive dollar signs in the "tag field" of a TUTOR state-

ment, a "c" at the beginning of a line followed by a space

(i.e., "c "), or by an asterisk at the beginning of a line.

Upon locating one or more of these character strings in a

line of the program, the computer displays that line on the

terminal's screen. The investigator can then determine by

looking at the entire line whether the occurence of "c ", say,

is at the beginning (and hence actually indicates a comment)

or is only a part of some other coding or text. Decisions

of this kind can be made rather easily by clerical staff

having minimal training.

Sites

The ARPA authors had been taught or given suggestions

about various lesson characteristics during their TUTOR train-

ing at the Computer-based Education Research Laboratory (CERL)

and through consultation with the CERL staff. In most cases

only general guidelines were given to the ARPA authors: for

example, they were told to document any programming which was

unusual, complex, or which interacted with coding in other

4

files. The meaning of "unusual", "complex", or "interacted

with" was illustrated by examples, but was not further delin-

eated. In general, the local environment of the author was

more a determinant of his behavior than was the training he

received at CERL. Those environments did, of course, vary

from site to site, and it is for this reason that a variety

of sites were included in the study (see Appendix I for

descriptions of the sites). Furthermore, reporting the data

on a site-by-site basis serves to illustrate the variation in

sites' goals and standards.

Unfortunately, it was not possible to apply exactly the

same criteria in selecting the programs/lessons to be examined

from each site, because of variations in site 7oals, methods,

and types of materials produced. Furthermore, the computer

programs selected for examination from some sites included

non-instructional routines (e.g., routers and drivers) and/or

programs written solely for research purposes as well as

those written for instruction.

Table 1 summarizes the major characteristics of the

programs examined at each of the sites. Readers should refer

to Table I to facilitate interpretation of results presented

later in the report.

U)

0) U) Q) U)to > ;Z :4 > ,

CdIA 04-w

0 0 0a r

0 *x .,-4 * oH(U

0a 0:) 04(Q a) 0. 4 -40 CU
4 0 Cd$ 4Jca -- 4 4-i U)ca -A'

co~~ Q) 41 10c
f:- f:4 .-C) al0 t

~~~~~~- 0a 0 n3( ~ .'-
c4 o W: 04 UCpr_: p Ur ) o$4~~~0 

>(U 4-Q) c-'-4 8-2 8- --2 8-- $)r4 ::1 (U0 D c () c 0> 
*H 01 1-4 ~f0 '(n C4 >Y N C)i 4Q) r- r-4 -- CO- $ 4 4p) Q) 4-i :1C

00

:Ji 4 i 41
-4 Cd x U( ) -4.~o~~~~c 0d~ d4 U * Oto 0)U 0 C) (Z tC-: 00 Z; Z 

44Z 
-

0 (n- (U 4$4 U-~ 
0~dC Z((U r_4 (Uo 4d) ( c Cd (Uc 0 -rIn 0 d (u- 4 i. pH 4-kal $4£4- 0~ W 0- 4-4 c

.0~ ~~ 
p-U 1--44~ d

0 to. Q)~ u) 0~d>

0 4li 0I4$ 4 C -$.

(U0 pb 0 .& -4CU4J '0 P- U(U)

u~~~U 0 Aa -(U-4 pL) 0., Cd (U41 to 44-':

W~( .- 4 p.( p (U U)U) toa)4J $. ca caU z - Q)
0u (Ud a) p .,4c

co 04~ Q1 4- UU Cdr$
uU rd -A C

(U --H ca1-
rU 4J 44 Pi 4-4 cl 4 - r-4*d 

z 0 0 > " -4Cr-I CI) 
0

r.) a) " U-'$ ., oz



6

1PECIFIC CHARACTERISTICS

Documentation

We use the term "documentation" broadly to indicate both

the naming of variables and the commenting of lines or seg-

ments of programming. On the PLATO system, documentation can

be implemented via notes off-line (on printed copies of the

lesson or in notebooks) or via on-line comments. Because a

poll of AR)A authors indicated little if any off-line docu-

mentation, the study of on-line documentation herein can be

viewed as being essentially comprehensive.

The need for documentation is undisnuted. Its quantity

should he proportional to the complexity of the coding used!

the more complex the program, the greater the need for docu-

mentation. Because many of the lessons written by ARPA authors

do not use complex programming, it might be expected that

these lessons would not require extensive documentation.

Nevertheless, good practice dictates that some documentation

be provided even for relatively straightforward programming.

The level of documentation was measured by examining:

(a) the number of on-line comments of all kinds, and (b) the

use of defined variables.

On-line comments. Although comments can be placed in

PLATO lessons in three ways (see Appendix II), we did not

distinguish among the three comment "formats" in making our

counts. As lines of the TUTOR code potentially containing

comments were found and displayed by the computer, they were

tallied as comments if they contained any sort of information

that would he useful to the author or a later "caretaker" of

the programs.

Table 2 summarizes the rates of use of comments in ARPA-

sponsored TUTOR programs.



7

Table 2

Jse of Corm:!nts ip Pro-rims ev'loF, ed 'it APPA Sites

Site a Lessons Total # fiverage 4
with Cornents C.oments/
Comments Lesson

CPHA 37 24 31 0.9

ARI 20 9g 313 15.6

MAX 7 0 0 0.0

ORL 17 31 57 3.4

AE 22 73 192 8.7

SHP 6 50 170 2.6

NTC 15 13 12 0.3

N.I. 12 100 172 14 .

a j= total number of lessons examined at each site

It is difficult to gauge the adequacy of the on-line

comments used by authors at the various sites. For example,

it is possible that the Chanute programming is so straight-

forward that persons responsible for making revisions can do
so readily even with only an average of .8 commented lines

per lesson. On the other hand, the nature of the programming

in lessons produced at the flaval Personnel Research and Devel-

opment Center (NPRDC) North Island Site (N.I.) might be so

complex that even an average of 114.3 comments per lesson is

insufficient from the viewpoint of the person charged with

making revisions. Not having attempted to unravel the

intricacies of the coding used in each program, we are hesi-

tant to pass judgment on the adequacy of the comments pro-

vided by the original authors. Nevertheless, on the basis of

our experience with inadequate documentation, we are sorry

to find so many lessons with no comments at all (see the



!8

second column of data in Table 2). Perhaps the best use of

the results in Table 2 is as a benchmark against whicK mana-

gers of courseware development projects can gauge lessons

produced under their control. These data will be most useful

for those managers who are familiar with the lessons written

at ARPA sites and hence are able to judge the relevancy of

these results for their own situation.

Named variables. The computer storage locations or vari-

ables available for use in programs in the TUTOR language can

be accessed in their "primitive" form (e.g., nl,n2,...,n150:

vl,v2,...,v150) or they can be given meaningful names of up

to seven characters in length (e.g., nl=index, n2=count,

v3=root, etc.). Because unique names can be associated with

the primitive variables by use of a -define- com;rand, such

variables are said to have been "defined". There are several

advantages to using defined variables, but the one of greatest

current interest is that complex uses of meaningfully-named

variables are much easier to decipher than those using varia-

bles in their primitive, un-named form. The use of defined

variables, therefore, is an important method of documentation.

All programs selected from each site were searched for

the presence of -define- commands. Unlike "comments" which

can and should be distributed throughout a program, -define-

commands are typically used only once per lesson. A single

-define- can be used to associate names with practically any

number of variables. Hence, the absence of a -define- command

is quite telling because it indicates that no named variables

were used. On the other hand, the mere presence of a -define-

command does not guarantee that all variables used had been

given names.

To estimate the rate of usage of defined variables, we

identified a set of 11 target variables and searched for ref-

erences to them in each of the lessons (see Appendix II for





10

Table 3

Defined and Primitive Variables

% Lessons % Lessons % Lessons % Lessons % Lessons
With All With No With Some With No With No

Site N Target Target Target Target -Define-s
Variables Variables Variables Variables
Defined Defined Defined Observed

CHA 37 0 86 14 0 86

ARI 20 95 5 0 0 10

MAX 7 100 0 0 0 0

ORL 16 25 31 38 6 26

ABE 22 0 55 45 0 45

SHP 66 27 5 44 24 38

NTC 15 0 100 0 0 93

N.I. 12 33 33 33 0 34

aN = total number of lessons examined at each site



Courseware Engineering

The construction features of a program which allow it

to be efficient and effective in its medium constitute what

we call courseware enrcineering for CBF. Efficiency is con-

sidered in terms of the extent to which the author's program-

ming "style" interferes with his lesson's use by students or

other authors. This concern can be thought of as a kind of

"human engineering" applied to CBE courseware materials. Dis-

cussed in this section are several examples of poor courseware

engineering habits which we observed and measured. These

are: oversized lessons, poor implementation of drivers, and

insufficient numbers of student restart points.

Lesson size. The amount of space that a lesson occupies

is closely related to its usability. A large lesson, unless

used by several students simultaneously, takes up'more than

its "fair share" of active computer memory (known on the PLATO

system as Extended Core Storage or ECS). Because ECS is allo-

cated among the various sites attached to the system, a single

user of a large lesson at a given site may prevent other users

at that site from accessing their desired lessons. Large

lessons also are typically found to be more difficult to mod-

ify and troubleshoot. Therefore, the experienced, conscien-

tious PLATO author generally tries to limit the size of his

lessons to approximately 3000 computer words each and divides

into two or more sections those lessons which are larger than

about 5000 words.

Some lessons must, by their nature, fall outside the

bounds of normal usage. However, among the large lessons

produced by ARPA authors, only some of those developed at the

Sheppard and San Diego sites (NTC and N.I.) were so monolithic

that they could not be divided.

Lessons which are too small can also cause prollems

for the user. These hazards include a greater proportion of system



12

resources expended on "overhead" operations (e.g., condensing or

disk accessing) and, if the same driver routine is used in

each of several small lessons, a large amount of ECS may be

taken up by duplicate copies of the driver's code. Some

programs which present large amounts of text have utilized

a small active driver routine designed to call up and display

sections of text from a dataset file. Although such programs

may be effective in reducing the amount of ECS in use at any

one time, they may require more frequent disk accesses than

can be easily supported by current system resources. In gen-

eral. however, the problems associated with too-small lessons

are not as troublesome as those which stem from excessive

size, and no too-small lessons were observed in this study.

Table 4 portrays several perspectives on size of lessons

at individual sites. A few extremely large programs can be

tolerated at a site if their impact is diluted by the use of

many other small lessons or if large lessons are used only

during low usage periods. Therefore, to allow a few excep-

tional lessons to be "overlooked" in determining the range in

lesson size, interquartile ranges were calculated. These are

ranges for the "middle" group of lessons after the largest

and smallest 25% have been discarded. All sizes are given in

terms of the number of 60-bit computer "words" of ECS occupied

by a lesson while in use.

Only a few sites reported having shortages of ECS because of

their use of large lessons. Chanute AF9 (Dailman, DeLeo,

Main & Gillman, 1977) and the NPRDC sites, NTC and N.I.,

(Crawford, Hurlock, Padilla & Sassano, 1976) reported that

they could not always use all their terminals because of ECS

shortages during periods of peak computer usage (10 a.m.

through 3 p.m. CST).



13

Table 4

Indicators of Size of TUTOR Programs Developed at ARPA Sites

Inter-
Full quartile

Site Na  Mean Median S.D. Range Range

CHA 37 4949 4979 2103 755- 3442-
10375 6140

ART 20 3544 3990 1691 145- 2233-
6240 4774

MAX 7 3837 4056 1200 1688- 3562-
5063 4372

- ORL 16 2492 2401 910 1246- 2013-
4559 2909

ARE 22 3921 3869 1177 1500- 3018-
6714 4260

SHP 66 5055 5117 1362 1500- 4061-
7821 6037

NTC 15 5412 5203 862 4171- 5091-
8099 5482

N.I. 12 3536 3691 2615 350- 1761-
8235 5009

a N = total number of lessons examined at each site

As seen in Table 4, the full or unattenuated range shows

the CHA, NTC, and N.I. sites to be the ones having the largest

single lessons. Since these also were the sites which reported

the most difficulty with ECS shortages, it appears that the

unattenuated range is an adequate measure for forecasting

problems with long'lessons (i.e., it probably is not neces-

sary to compute interquartile ranges). Assuming that future

sites would have similar distributions of lesson sizes and

use patterns, it is apparent that site managers should



14

direct their attention toward trying to shorten the longest

lessons. The data suggest, but do not prove, that dividing a

few large lessons may significantly alleviate the difficulties.

Use of drivers. In order to make the most effective use

of authors' time, various routines known as "drivers" have been

developed (see Francis, 1976b, Appendix IV for an example).

These routines are used to speed the construction of commonly

used lesson segments such as tests, drills, data collection,

etc. By using these pre-written routines, the author saves

programming time when the lesson is created. By maintaining

only a single copy of each routine, separated from the lessons

employing it, the author also speeds revisions. For example,

if the decision to "time" all students in drills is made after

all the lessons are prepared, the authors who used a driver

need make but one change--in the driver for the drills. Authors

who have individually coded each drill or who have copied

standard routines into each lesson must make the modifications

in each individual lesson.

Two sites used drivers to great advantage. Several test

drivers were developed by the MTC group and used by the

Sheppard AFB staff. Authors at the San Diego NPRDC sites

developed and successfully implemented drivers of their own.

The value of drivers was well-recognized among other ARPA

PLATO sites, but their implementation was sometimes misunder-

stood, hence negating many potential benefits. For example,

one site using MTC-supplied drivers copied the driver routines

into EACH lesson, changing the names of units, -define-d

variables, etc. Subsequently, when modifications were required,

all lessons had to be individually revised with different

variables having to be found and corrected in each lesson.

If these routines had been used as originally intended (i.e.,



15

by maintaining only a single form of the code which could be

accessed by other programs via a -use- command), it would only

have been necessary to make changes in that original -use-d

piece of coding.

Another site created drivers which employed very naive

programming. A single multiple choice item, programmed

using these drivers, consumed more than half of the student

variables available to the programmer and several hundred

words of EC'. Although the developer of these drivers hoped

they would be used by a wide PLATO audience, it is not

surprising that few authors made use of them.

A potential hazard of extensive use of driver routines

is that they may be written in a too-general format. A

developer may be tempted to add a variety of effort-saving

features which may not be needed for all applications, hence

increasing the overhead (in terms of ECS requirements) for

those users who need only a subset of the driver's features.

Thus, it is necessary to balance generality and potential

for effort-savings of driver routines against the increased

operating overhead they may require. Optimizing the design

and application of drivers requires a degree of experience

which few new authors will have.

Restart commands. -restart- commands are used to estab-

lish re-entry points so that a student can begin a new session

at an appropriate place in his current lesson. Failure to

insert these commands can cause problems for the student: if

he leaves his lesson before completion or if a system inter-

ruption terminates his progress involuntarily, he will be

forced to start again at the beginning of the lesson. This

has been a source of difficulty and frustration for students

in the past (see Klecka, 1977b).

The method we have used to measure the use of the -restart-

feature involves counting the number of -restart- commands



16

in a lesson and dividing that total by the number of "blocks"

of TUTOR source code in the lesson, a measure of the lesson's

length. The resulting ratio is a more refined measure than

the total -restart-s per lesson because it takes lesson size

into account (i.e., it gives the number of -restart- commands

per unit of lesson size).

Table 5 contains the raw counts of -restart- commands

used at the various sites. Table 6 shows the number of

-restart-s per block of source code.

Table 5
Number of -restart- Commands per Lesson

Lessons

Site Na # Commands with Command

CHA 37 315 97%

ARI 20 21 60%

MAX 7 3 29%

ORL 17 43 8PS

ABE 22 0 0?

SlP 66 205 20%

NTC 15 54 7%b

N.I. 12 1 87b

a N total number of lessons examined at each site

b Instead of using -restart- commands, these lessons relied

on student variables to maintain the student's place in the

lessons.



17

Table 6
Number of -restart- Commands per Elock of Source Code

inter-
Full quartile

Site Na Mean Median S.D. Range Range

CHA 37 0.49 0.4 0.38 0.00- 0.21-
1.60 0.64

ARI 20 0.09 0.06 0.12 0.00- 0.00-
0.44 0.10

MAX 7 0.04 0.00 0.08 0.00- 0.00-
0.20 0.00

ORL 16 0.24 0.29 0.18 0.00- 0.08-
0.50 0.36

ABE 22 0.00 0.00 0.00 0.00- 0.00-
0.00 0.00

SHP 66 0.18 0.00 0.35 0.00- 0.00-
1.80 0.24

HTC 15 0.30 0.00 1.16 0.00- 0.00-
4.50 0.00

N.I. 12 0.00 0.00 0.01 0.00- 0.00-
0.03 0.00

a N total number of lessons examined at each site

Although feedback from some of the sites (as well as

our general experience) indicates that -restart-s were used

less frequently than might have been desired, we do not yet

know what ratio of restarts per block should be taken as a

minimum standard. Hopefully, this measurement technique can

be applied to lessons for which independent measures of

-restart- adequacy are available. If it is known, for example,

that students rarely complain about having to repeat small



18

sections of material after unplanned interruptions in a given

lesson, that lesson's -restart-s per block ratio may be a

reasonable standard for other lessons in that subject area

and for similar populations of users. However, since

measures of storage soace (e.g., blocks or units) would be

strongly affected by authoring styles and demands of the
material, a more appropriate measure might be -restart-s per

display.

Measurement of Programming and Instructional Design Sophistication

An author's proficiency in effective and efficient use

of the TUTOR language to program instructional lessons can

be gauged by his use of certain commands (or language features

such as "reserved words").

Reserved words. Reserved words (also known as system

defined variables) are storage locations in which information

relating to a student's progress through a lesson are auto-

matically stored by the computer. An author can write pro-
grams in such a way that they utilize the information in
the reserved words to individualize the instruction or collect

student performance data.

A small group of the more than 100 reserved words in the

TUTOR language (Avner, 1977) was selected as a target for

computer-scanning of the ARPA lessons (see Appendix II for

details). These reserved words fell into the following four

categories of apolication:

1. area data, auto-collected by the PLATO IV system
to r¢ive information on student nerformance without
requirin7 the author to maintain a count of the
number of questions answered correctly, the total
number of questions, the total number of errors
or requests for help, etc.

2. time data, to record the amount of time taken by
a student to complete an instructional unit such
as a drill, or the amount of time a student may
choose to spend working practice problems.



19

3. feedback control information, to enable an author
to prescribe feedback messages that take account
of the number of times a student has attempted
to answer that question.

4. answer judging information, to enable an author to
prevent duplicate answers to multiple-answer aues-
tions, etc.

Use of reserved words varied widely in the programs

examined in this study. Some lessons incorporated references

to many reserved words, each several times; others made no

references to the reserved words selected as targets for

computer-scanning. The data for all elements of the target

set were pooled and are reported in Table 7.

Table 7
Usage of Reserved Words

Site Ha  # Reserved % Lessons with
Words Reserved Words

CHA 37 53 49%

API 20 14( 85%

MAX 7 69 1 0%

ORL 17 33 87%

ABE 22 16 73%-

SHP 66 653 86%

NTC 19 18 11%

N.I. 12 19 58%

a q, = total number of lessons examined at each site



20

Resronse handling and feedback. The use of certain com-

mands and feedback after the judgment of student responses can

indicate a degree of care in instructional design. The author

of an instructional lesson may anticipate certain incorrect

answers a student is likely to give. In such cases he or she

might use a -wrong- command followed by a feedback message

designed to correct the student's specific misunderstanding.

A -no- command may be used to enable the author to provide

general feedback to unanticipated incorrect responses (i.e.,

those which do not match a -wrong- command). An author who

is less sophisticated in response handling might fail to

include either -wrong- or -no- commands. In such cases the

only corrective feedback the student receives is the "no"

which is automatically provided by the system. Feedback

delivered for specific responses could be of greater value in

guiding the student toward the correct answer without blatantly

giving it away (see Klecka, 1977a). In a similar vein, the

use of multiple or sophisticated forms of the -answer- command

enable an author to broaden the range of acceptable correct

responses at relatively little cost. The provision of instruc-

tional "helps" via the -help- command may also serve to indi-

cate care in instructional design.

Table 8 presents summary statistics for a variety of

potentially-useful measures of the response handling and

feedback characteristics of lessons produced at the ABE, SHP,

and CHA sites. For purposes of interpretation it should be
noted that the counts of -arrow- commands include any -arrow-s

used for indicies and other applications which do not involve

judgment of student responses. The counts shown for -wrong-

commands also include instances of -wrongv-. Likewise, those

given for -answer- commands include occurrences of -ansv- and

-ansu- (see Appendix II for details).



21

Table 8

Measures of Response Handling, Feedback, and
Remedial Assistance in SHP, ABE, and CHAa Lessons

Ratio Site Mean Median S.D. Full Range Interquartile
Range

-wrong-/ SHPb 1.22 0.75 2.02 0.00 - 13.50 0.46 - 1.40
-arrow- ABEc 0.90 0.88 0.54 0.09 - 2.62 0.61 - 1.21

CHAd 0.78 0.28 1.35 0.00 - 4.00 0.00 - 0.80

-no-/ SHP 0.76 0.76 0.60 0.00 - 3.62 0.50 - 0.94
-arrow- ABE 0.78 0.81 0.36 0.30 - 1.84 0.58 - 0.87

CHA 0.36 0.39 0.26 0.06 - 0.71 0.10 - 0.46

(-wrong- + SHP 1.98 1.58 2.09 0.00 - 13.50 0.70 - 2.08
-no-)/ ABE 1.70 1.62 0.76 0.40 - 4.13 1.36 - 2.06
-arrow- CHA 0.68 0.69 0.32 0.06 - 1.00 0.62 - 0.96

-answer-/ SHP 1.23 1.05 1.06 0.00 - 5.80 0.70 - 1.38
-arrow- ABE 0.74 0.81 0.32 0.07 - 1.13 0.67 - 1.00

CHA 0.74 0.75 0.20 0.43 - 1.00 0.64 - 0.88

-help-/ SHP 0.10 0.03 0.18 0.00 - 0.87 0.00 - 0.13-block- ABE 0.07 0.00 0.11 0.00 - 0.39 0.00 - 0.08
CHA 0.04 0.00 0.07 0.00 - 0.19 0.00 - 0.00

a Data for the CHA lessons were collected while the lessons were in first

draft form

b N=44 (i.e., 44 SHP lessons were examined)

c N=24

d N=8

Note. The various ratios used as measures of instructional design competence
were computed within each lesson. The summary statistics reported describe
the distribution of these ratios across the set of lessons at each site.





23

DISCUSSION AND CONCLUSIONS

9pecific Findings

Documentation. The lessons in the target group of ARPA-

sponsored TUTOR programs were not thoroughly documented. This

conclusion follows both from measurements we have taken (see

Tables 2 and 3) and subjective judgment based on our experience

as "caretakers" of lessons following project completion.

One reason for the meager levels of documentation is that

most of the ARPA PLATO authors had no previous programming

experience or training. The importance of documentation is

stressed in most formal computer science training programs,

and these attitudes are reinforced in work environments. Lack-

ing prior experience, the ARPX authors had not previously

"internalized" the value of well-documented programming. Fur-

thermore, many ARPA projects were considered to be short-lived
"experimental" efforts whose programs would not require main-

tenance after the project had ended (hence lowering the

perceived importance of documentation). Even for those authors

who did develop the habit of inserting comments in their more

recent lessons, the burden of going back to add comments to

earlier work may have been felt as being too great to under-

take. In general, there were few environmental rewards for

including ample documentation and few punishments for not.

Courseware engineering. The issue of lesson size as it

relates to the periodic shortages in ECS experienced during

the five year history of the ARPA/PLATn projects has an inter-

esting parallel to the energy crisis in the U. S. During

periods when ECS is plentiful in relation to demand, there

are few "punishments" for writing excessively large lessons.

Problems do occur, however, when demand increases to exceed

a site's ECS allocation. Unfortunately, the obvious remedy

of reprogramming lessons to reduce their size is often viewed



24

as too "painful" or expensive. Hence some people argue for

conservation of resources (i.e., keeping lesson size small)

while others advocate expandin7 resources (buying or buildina

more memory space).

There is no doubt that lazy programming habits wasted

ECS, and that some ARPA authors were adamant about not dividing

oversize lessons. There is also no doubt that there are some

legitimate needs for lessons as large as or larger than the

current limits. What is most surprising to us is the apparent

ineffectiveness of incentives for encouraging mood program-

ming habits. For example, a PLATO site with more than 12

terminals typically "owns" and manages its own ECS pool (size

based on number of terminals). By limiting (or reducing) the

size of its lessons, a site gains additional flexibility and

the ability to use all of its terminals simultaneously for a

greater variety of activities. By failing to set or enforce

lesson size limits, the site is forced to let some of its

terminals remain idle or to implement rigid schedules of use.

In our experience, this penalty had a very small effect for

motivating staff to divide large lessons; they preferred to

let some terminals go unused.

The problems with "driver" programs noted earlier seem

largely to be the result of mistaken impressions regarding what

drivers do, how they operate, and which resources are scarce

vs. which are plentiful. A description in "aids" or a chapter

in an off-line manual could indicate the characteristics of a

well-constructed driver and thereby attempt to eliminate the

inefficient practices identified in this study.

The data presented regarding the use of -restart-s in

instructional lessons (see Table 6) lead to the conclusion

that more consistent usage would have been desirable. One

possible explanation for this is that -restart-s are often

left out until after students begin to use the lessons.



25

Authors (since they are less affected by unplanned interrup-

tions or the necessity to attend other classes, etc.) may not

notice the absence of -restart-s until actual students begin

to complain. Even student tryouts of new materials may not

alert the author to cases of insufficient numbers of -restart-s,

because such trials are usually completed in one sitting.

Some authors may not have added -restart-s even after lessons

were put into use, either because of lack of understanding of

their importance or a belief that adding them was a difficult

task. We believe that these notions can be dispelled through

proper training.

Reserved words, response handling, and feedback. Commands

and language features discussed earlier under these headings

can be economically described as "interaction commands". The

potential for extracting useful data via computer-scanning

seems especially great for commands in this category. Because

of the large numbers of interaction commands present in most

lessons, their ratios tend to be stable from one lesson to

another (see Table 8). This stability suggests that it may

be possible to describe minimal standards for frequency of

interaction commands which can serve as guides for new authors

or as measures of how well a given lesson is adapted to an

interactive medium such as CBE.

Although this investigation measured ratios of commands

present in lessons' TUTOR coding (indicative of potential

interactions and feedback), we were not able to acquire

sufficiently well-matched data to determine ratios of those

commands encountered by students during study of the lessons

(i.e., actual interactions and feedback). Such "execution

time" data could validate analyses of coding used in lessons

and aid their interpretation. Techniques for assessing the

meaning and usefulness of student interaction data are more

advanced at this time than those described here for program



26

command analysis (see Francis & Weaver, 1977), but the Doten-

tial of the latter should be further explored and exploited.

Comments on Management Uses of the Computer Searching Technique

This report demonstrates that several categories of data

useful in operating a PLATO CRE site can he gathered effi-

ciently by means of various features of the PLATO system itself

(particularly its string-searching capability). Levels of

documentation and -restart- use can be monitored easily with

these techniques, and the potential for study of interaction
command use has been noted. This report also suggests ways

for minimizing the time and expense for data collection. For

example, it appears that monitoring the size of only the

largest lessons may be sufficient for avoiding problems of

long lessons and that merely checking for the presence of

-define- commands may be an adequate measure of use of named

variables.

Although most of these forms of data can be easily

collected by clerks having a minimal amount of training, we

feel that project managers may prefer to make these checks

themselves on an informal but regular basis. There is a

need for personal experience before many of these procedures

are internalized and managers are in the best position to make

decisions about how to use the data derived from these tech-

niques. We recognize (and have experienced) the difficulty

of convincing authors of the need for anything that causes

even slightly more work in the short term when payoffs are

greatest in the long term (for an example, see the discussion

regarding documentation). We believe, however, that skillful

use of computer-scanning techniques can give managers an

empirical basis for establishing guidelines and assessing

authors' adherence to them.



27

REFERENCES

Avner, E. PLATO user's memo: Summary of TUTOR commands and

system variables (6th edition). Urbana, Ill.: Univers-

ity of Illinois, Computer-based Education Research Lab-

oratory, September 1977.

Crawford, A. M., Hurlock, R. E., Padilla, R., and Sassano, A.

Low cost part-task training using interactive computer

graphics for simulation of operational equipment.

San Diego: Navy Personnel Research and Development

Center, 1976.

Dallman, B. E., DeLeo, P. J., Main, P. S., & Gillman, D. C.

Evaluation of PLATO IV in vehicle maintenance training.

(AFHRL -TR- 77-59) Lowry Air Force Base, Colorado 80230:

Air Force Human Resources Laboratory, Technical Training

Division, 1977.

Francis, L. PLATO IV terminal peripheral devices. Urbana,

Ill.: University of Illinois, Computer-based Education

Research Laboratory, 1976a.

Francis, L. The TUTOR training course: Lessons learned.

Urbana, Ill.: University of Illinois, Computer-based

Education Research Laboratory, 1976b.

Francis, L. & Weaver, T. Analysis of student interaction

data in computer-based education. Urbana, Ill.: Univers-

ity of Illinois, Computer-based Education Research

Laboratory, 1977.

Klecka, J. A. An overview of chanute lessons. Urbana, Ill.:

University of Illinois, Computer-based Education Research

Laboratory, 1977a.

Klecka, J. A. Three aspects of PLATO use at Chanute AFB:

CBE production techniques, Computer-aided management,

and Formative development of CBE lessons. Urbana, Ill.:

University of Illinois, Computer-based Education Research

Laboratory, 1977b.



28

Lyman, E. R. PLATO highlights. Urbana, 111.: I'tniversity

of Illinois, Computer-based Fducation Laboratory, 1177.

Sherwood, P. The TUTOR language. (176360692) 'linneapalis:

Control Data Education Company, 1977.

Wood, N. The PLATO system. Urbana, Ill.: University of

Illinois, Computer-based Education Research Laboratory,

1975.



29

APPENDIX I

Sites Selected for this Study

School of Applied Aerospace Sciences, Chanute

Air Force Rase, Illinois (CHA)

U.S. Army Ordnance Center and School, Aberdeen

Proving Ground, Maryland (ABE)

School of Health Care Sciences, Sheppard Air Force

Base, Texas (SHP)

Navy Personnel Research and Development Center,

San Diego, California

1. NTC - Navy Training Center (San Diego)

2. N.I. - Navy Training Center (North Island)

Naval Training Equipment Center,

Orlando, Florida (ORL)

Air University, Maxwell Air Force Base,

Alabama (MAX)

Army Research Institute, Washington, D.C. (ARI)

Of the above sites, Aberdeen, Orlando, and Maxwell were no

longer subscribing to PLATO service at the time of the

preparation of this report.



30

APPENDIX II

Character Strings used as Targets for Computer-Scanning

Object Character Strings

Defines a define, n2, v2, nc2, vc2

Comments $, c *

Restarts/ restart

Lesson

Reserved b judged, clock, aokist, ntries, jcount,

words anscnt

Anticipated/ wrong, no, arrow, answer, help,

unanticipated wrongv, ansv, ansu

responses

a note that searches for the string "n2" will also result

in matches for the n20-n29 variables. The rationale for this

choice of target variables is as follows: n1 would have

located too many variables for the purpose of this study (nl,

n10-n19, plus n1OO-n150). Also, the number of authors using

variables n100-n150 would be too small and the TUTOR training

given the ARPA authors suggested that the variables nl-n9 be

used as "scratch" variables which would not need to be -define-d.

(Since they require only two keystrokes, that set is preferred.)

The last consideration was that we needed a set of variables

that most people would be likely to have used (hence n80-n89,

etc. were not selected on the assumption that lower-numbered



31

variables would have been used first). Considering these

criteria, the best choice was n2 plus n20-n29. For complete-

ness, the Iv", "vc", and "nc" forms were also targets for the

search.

b information contained in the selected reserved words:

judged number of times student responses

to questions have been judged

r|

clock amount of time spent in lesson

or section of lesson

aokist number of questions answered

correctly on first try

ntries number of attempts at current

question

jcount number of internal 6-bit character

codes in student response

anscnt number of answer-judging commands

encountered before matching the

student's response

I


